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The two-dimensional stationary problem of the effect of a mobile load on a 
nonlinearly compressed strip with a rigid foundation is studied. The case of 
linear loading and unloading of the medium was analyzed in [i, 2]. In this 
work, unlike [i, 2], the wave process is studied taking into account the non- 
linear loading of the strip material, the effect of the inelastic properties of 
the medium on the distribution of kinematic parameters and stresses in it is 
studied, and the form of the surface of the front of the wave reflected from 
the rigid foundation is determined. 

Let a monotonically decreasing normal load move with constant velocity D, exceeding 
the velocity of propagation of loading-unloading deformations of the medium, along the top 
boundary of a strip with a thickness h. The medium filling the strip is modeled by a 
generalized "plastic gas" [3], and under the load the relation between the pressure p and 
the volume deformation ~ is assumed to be a quadratic polynomial p = ~le ~ ~2e~(dp/ 
d~O, d2p Ide~_'>O) The slope angle of the unloading branch E of the p ~ e diagram is 
larger than the slope angle of the loading branch, and the profile of the load does not 
change with the propagation of the waves. In this case, a compression wave with a curvi- 
linear surface E (Fig. i) propagating in the medium with $== x-~Dt~<,, ~1:= y =:h is 
reflected from the rigid boundary in the form of a shock wave with the surface E0, in 
front of which an elastic wave of a weak discontinuity, as a characteristic of the negative 
direction, is emitted with a high velocity Cp = /E/p0. Because of the propagation and 
interaction of waves with the boundaries of the strip corresponding perturbed regions 1-4 
(Fig. i) appear. We shall solve the problem for the regions 1-3. If the solution of the 
problem is constructed in region 1 by the inverse method with a given propagation velocity 
of the front ~ d~]/d~ := tg ~(~) = R~--R~ , where RI, R 2 are fixed constant quantities, then 
based on [3] for the velocities u1(g, ~), vi($, N) and the pressure Pl(g, G) we obtain 

o ~ (-- ~)~+~ tg ~ [F~ (~ ~ ~n)l {~ ~ ~t tg a [ f i  (~ ~ ~ ) ] }  O~ (~ -T- ~ ) ~  ( t .  1) 

2 

Vl(~,~I)----- D 
tg ~ [F~ (~ -T In])] 

{t-}- tg 2 a[f~ (~ ~ U~l)]l ~ {|  T li tg a [F~ (~ :t: ~X~l)]} OPi (~ ~ ~t~l); 

($, -PoO  m, = I,>rJl,  tg 2 ~[Fi(z~)]-- ~--7' (1.2) 

Here Fi(zi) is the root of the equation g $ DG($) = zi with respect to $, and in the case 
i = 1 the upper sign is used. 

To find the solution of the problem in region 2, like in [2], we assume that the 
pressure in front of the reflected wave is the same as in the corresponding points of the 
incident wave~ This means that on different horizontal levels (~ = const) P2(g, ~) on the 
line AD on the side of region 2 equals PI($) on the front of the incident wave OA (see 
Fig. I). It is assumed at the same time that the front E0 is a slightly curved surface~ 
For a half-plane this is confirmed by the results of [3, 4]. For this reason, all conditions 
of the problem on the surface Z 0 are satisfied approximately with respect to its initial 
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Fig. i 

form, i.e., when ~Izh--tg ~o(~--~a) Thus 

P i ( ~ ,  ~)  = P i ( ~ )  a t  ~ ~ h - - t g O o ( ~ - -  ~.)- 

In  a d d i t i o n  on t h e  c h a r a c t e r i s t i c  ~ + Mn = : a  + ~h t h e  c o n d i t i o n s  

(1.3) 

hold. 
the wave equation [3], in the region 2 

~(.~, n) = !~(~ - -  ~ )  + h ( ~  + ~ ) .  

Substituting (1.5) into (1.3) and (1.4), we obtain 

' I . tg cr (F I (z)) ]:(,.) = - s;(~o § ~ h ) - ~ ,  h 
+%~ ~(,-~(:))1' 

[i + I ~ tg a (F] (z))] m: (z)- [t + tg ~- r162 (F+ (~  + oh))]' 

X . i t - -  9 tg c~ (F 2 (~. + 9h))] ~), (~  + ~h)}.,; 

+~' ~(~1(~)) I.Oo o' t~" (v)) 
1, (z) = - -  1: (• - -  D [ t + tg' a (~, (~))] ' - - I .  m2 [ 1 + tg 2 ~ (~: (~))l 

? r 

u,(~, +I)-:  u,(~), v,(~, n) = vi(~) (l.4) 

Since the motion of the medium relative to the velocity potential ~2 is described by 

(1.5) 

X 

( 1 . 6 )  

where 

z ~( l+Z0)(h+tg~0Ba)  ~ . . . .  ( 1 . 7 )  
U = Zo :t, {1 -- l+t tg ~o) 

~o=(l--~ttgp~ ~a R i -  "F'R~--2hR~ D 2 

�9 ( ~ : ~ t g t : o ) '  = ~ :  : " ~ ' + = 7 - i '  % 

"~- R2 

(the prime indicates differentiation with respect to the argument). In the region 3 the 
solution of the problem, like in region 2, is expressed by d'Alembert's formula 

~3(L n) = h(~,-- ~n) + h(~ + ~n). (l. 8) 

At the same time the problem in the region 3 has the following boundary conditions: 

on the front of the reflected wave Z 0 

p* ( %  - -  v i* )  = p; ( %  - -  v3*,).~ ( 1 . 9 )  

9:  (ao - v , . )  ( v , .  - & )  = p ,  - p . ,  

* * a 0=Dsin~(~) .~  U21; ~ U3Tg 
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on the rigid foundation of the strip with ~I h, ~ < - ~ - ~  ~ , 

O%/d)~ = O, (i.i0) 

where 

oq, " dq> oq, sin l~) v,, = - -  ~ s i n  [~ - - '~'- c o s  I~, v~ ,= - W c o s  1~ + 

are the normal and tangential components of the mass velocity of the medium relative to the 
front Zo; ~(~) is the slope angle of the front of the reflected wave with the axis O$ 
(~0 = ~(0)); the parameters of the medium, referred to the front Z0, are denoted by an 
asterisk; and a0 is the velocity of propagation of the front of the reflected wave. 

Setting to a first approximation $(~) % $0, we write the third equation of (1.9) with 
~ h - -  tg~o(~ - -  ~a) as 

W - W )  = , o \ - ~  -b~]" (i.ii) 

If we take into account the fact that a 0 
equations in (1.9) assume the form 

- -  9oD ( 0 % / 0 ~  - -  0 % / 0 ~ )  = p*  - -  p * ;  

t ~ ( ~ )  = [ ~ ( ~ - ~ . D - / ~  o%~ , o ~  3 , ,o%1 

>> V2n and O~ % Po,  then the first and third 

(i.12) 

(i.i3) 

We note that tg $0 is determined from the condition (1.9) and (i.i0) at ~ = $a (see 
Fig. I). Using (i.i0) and (i.ii), from (1.8) we obtain 

r p 

18 (z) =/4 (z + 2~q); 

F I V ? ~ o ]  / 

/'~ ( . )  + ~ o h  (~o ,  + ;:0) 

(i.14) 

(i.i5) 

w h e r e  ko = F[( i  - -Eo)h  @ (i @%o) t g ~ o ~ a l ; h a  = h - -  tg~o~a;  

Y (z) = (i § ~ tg ~o) l'~ [(t + D tg Do) ~ - -  ~ (h + tg ~o~.)] 

+ ( l - - g t g ~ o ) / ~ [ ( i - - D t g ~ o ) ~ + 9 ( h + t g D o ~ . ) ] .  
Solving the functional equation (1.15) by the method of successive approximations, we 

obtain the following recurrence relation: 

/4(z) = (1 @ p tg [~o) Y [  ~-~tt  tg [~ ~ + A.a ( - -  ~,o) ~ F  t ~ it tg ~o " ( 1 . 1 6 )  

The series (1.16) converges for k0 < i (the radius of convergence is easily established 
in the course of the calculations). Thus from (1.8), taking into account (1.14) and (1.16), 
we determine the velocity field us =-0%/0~ ,  v 3 = 0%/0q of the medium in the region 3. 
The formulas (1.12) and (1.13) also enable determining p~ and tg B(g). Thus, using the 
formula P3(~, ~) =:p~ d E(e:~---e:~) (in the region of unloading of the medium the regioD 3 is 
of this form), we find the pressure field in it, in particular, on the rigid foundation of 
the strip. Therefore, the problem in region 3 is completely solved. 

For the specific structure of the medium [3] calculations were performed on a computer 
for 

gl  --  I2 , ]27 .  I0 ' ,  a2 = 58,73. t08, E - - ~ 0 , i 6 . t 0 ~ ,  

P0 -- 200 kg ' sec2/m~,  Po = I05 kg/cm2,  

D = 3401f{  + 0,83p0, R, = t~ a .  = 0,1255, R2 = 0,86. t0 -3 . h = t ,2  m. 

(1.17) 
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The results of the calculations are presented in Figs. 2-5 for the pressure, mass velocity, and 
tg~ ($) and a function of $ in the sections q = h/2 (solid lines), h (broken lines), and along 
the front of the reflected wave Z 0 . In Fig. 2 it is evident-that the parameters p, u, and v 
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in regions i and 3 depending on ~ decrease in absolute magnitude in a nonlinear manner. 
In region 2 p and u increase linearly, and v decreases linearly and changes sign. These 
]parameters reach their maximum values on the corresponding points of the front of the 
reflected wave on the side of region 3, and their values decrease with increasing thickness 
of the strip (Figs. 2 and 3, h = 1 and 2 m). In Fig. 3 the curves 1 correspond to the case 
(1.17) with h = 2 m. In comparing the numerical results it was found that as the coefficients 
~ and ~2 increase the values of the parameters p, u, and v also increase. When Young's 
modulus E decreases, all parameters of the medium and the time over which they act on the 
strip correspondingly decrease (Fig. 3, curves 2). Analysis of the curves in Fig. 4 shows 
that the pressure p~(p~) on the side of the region 3 (2) along the front of the reflected 
wave depending on $ gradually decreases (increases), and the vertical (horizontal) compo- 
nent of the velocity of the medium increases (decreases). At the same time, when ~ = 
23.6 the reflected wave vanishes. In addition, Fig. 4 also shows for comparison the cal- 
culations for ~z = 12.127"102, ~2 = 58.73"103 with h = 2 m (solid lines) and h = 1 m 
(broken lines), and for ~i = 24.254"102, ~2 = 117.46'103 with h = 2 m (lines with circles). 
Examination of the curve tg $($) (Fig. 5) shows that it slowly decreases as ~ increases and, 
therefore, the front of the reflected wave is a slightly curved surface which is concave 
'with respect to the O6 axis (see Fig. i). However, the change in tg 6($) in the range of 
studied equals approximately 2-4% of its initial value at the point $ = ~, q = h. 
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